
VITA: Virtual Network Topology-aware
Southbound Message Delivery in Clouds

Luyao Luo1,2 Gongming Zhao1,2 Hongli Xu1,2 Liguang Xie3 Ying Xiong3
1School of Computer Science and Technology, University of Science and Technology of China

2Suzhou Institute for Advanced Research, University of Science and Technology of China
3 Futurewei Technologies, USA

Abstract—Southbound message delivery from the control
plane to the data plane is one of the essential issues in
multi-tenant clouds. A natural method of southbound message
delivery is that the control plane directly communicates with
compute nodes in the data plane. However, due to the large num-
ber of compute nodes, this method may result in massive control
overhead. The Message Queue (MQ) model can solve this
challenge by aggregating and distributing messages to queues.
Existing MQ-based solutions often perform message aggregation
based on the physical network topology, which do not align with
the fundamental requirements of southbound message delivery,
leading to high message redundancy on compute nodes. To
address this issue, we design and implement VITA, the first-of-
its-kind work on virtual network topology-aware southbound
message delivery. However, it is intractable to optimally de-
liver southbound messages according to the virtual attributes
of messages. Thus, we design two algorithms, submodular-
based approximation algorithm and simulated annealing-based
algorithm, to solve different scenarios of the problem. Both
experiment and simulation results show that VITA can reduce
the total traffic amount of redundant messages by 45%-75%
and reduce the control overhead by 33%-80% compared with
state-of-the-art solutions.

Index Terms—Southbound Message Delivery, Message Queue,
Virtual Network Topology, Virtual Private Cloud.

I. INTRODUCTION

Nowadays, as more enterprise customers migrate their on-

premise workloads to the cloud, the user base of a cloud

provider overgrows in just a few years [1]. In current cloud

deployment model, tenants deploy virtual machines (VMs)

on compute nodes in the cloud data plane and manage the

VMs through unified restful APIs by the cloud control plane

[2]. The control plane processes tenants’ requests, and sends

network configuration messages, also called southbound mes-
sages, to computes nodes [3]. Over the past decade, we are

observing rapid growth of the number of customers and the

continuous expansion of individual network size. As a result,

the number of southbound messages is mounting a rapid pace

[4]. Thus, how to deliver the southbound messages with low

provisioning latency and low control overhead has become a

critical issue for hyper-scale cloud deployments [5]–[7].

A natural method to deliver southbound messages is di-

rect end-to-end transmission via message passing interfaces

(MPI) [8] or remote procedure call (RPC) [9]. For example,

as one of the common protocols in distributed microservice

frameworks, RPC establishes TCP links between servers and

clients. In this way, each compute node directly communi-

cates with controllers and receives all the required messages.

The downside is that, as the network scale increases, the

direct communication method will cause a high load on

the control plane, leading to message congestion or loss,

especially when encountering burst southbound traffic [10].

This insight has been discovered by the experiments [11], in

which gRPC [12] and Apache Thrift [13], two widely used

open-source RPC frameworks, are tested. The results show

that when the payload size of each message increases from

1KB to 10KB without limitation on the sending rate, the

successful queries per second drops from 10K to 4K.

Therefore, it is necessary to reduce southbound control

overhead in a large-scale cloud by decoupling the data plane

from the control plane [14, 15]. As an alternative, the Mes-

sage Queue (MQ) model is one of the most widely adopted

messaging solutions used to build cloud infrastructure and

tenant applications in the cloud [16, 17]. Specifically, a

MQ server is used as a messaging middlebox between the

control plane and the data plane, which implements multiple

queues for storing and forwarding messages. Each queue

is responsible for forwarding a set of messages with the

same attributes (e.g., subnet). Under this model, the controller

sends messages to different queues according to message

attributes, while compute nodes receive messages in one or

more queues by their own needs [18, 19]. The key step in the

MQ model is to determine which queues the controller should
send each message to, and which queues each compute node
receives messages from.

One of the most intuitive ideas inside the MQ model is to

specify a queue for each compute node. That is, the messages

are classified at the granularity of a single computing node. In

this way, the control plane sends each message to an exclusive

queue, and the corresponding computing node can obtain

the message by subscribing to the corresponding queue.

However, in reality, compared to a large number of compute

nodes (such as 5,500 compute nodes in CERN [4]), a message

queue server commonly supports a relatively small number

of queues. For example, the experiments of Apache Kafka

(a well-known open-source message queue) from [20] show

that setting up a few hundred queues will lead to frequent

crashes of the message queue server. Therefore, messaging at

the granularity of a single compute node is not feasible in a

large-scale cloud, and we must carry out message aggregation

with a proper granularity.

A common way for message aggregation is Node Grouping

(NG) in OpenStack Nova [21]. That is, the compute nodes are

2

Controller
10

VM2-4
VM3-3
VM3-4

n4

VM1-4
VM2-3
VM3-2

n3

VM1-2
VM1-3
VM2-2

n2

VM1-1
VM2-1
VM3-1

n1

Control Plane

3 2 3 2

Data Plane

1 1
1

1
1 1

1
1 1

1

End-to-End
Transmission

(a) Remote Procedure Calls

Exchange

topic
group1

Group1 Group2

Controller

3 3

33

6

33

VM2-4
VM3-3
VM3-4

n4

VM1-4
VM2-3
VM3-2

n3

VM1-2
VM1-3
VM2-2

n2

VM1-1
VM2-1
VM3-1

n1

MQ Plane

Control Plane

Data Plane

topic
group2

3 333

(b) Node Grouping

Exchange

topic
vn1

Controller

2 1

11

3

22

VM2-4
VM3-3
VM3-4

n4

VM1-4
VM2-3
VM3-2

n3

VM1-2
VM1-3
VM2-2

n2

VM1-1
VM2-1
VM3-1

n1

MQ Plane

Control Plane

Data Plane

topic
vn2

1
2 2

3 2 3 3

(c) VITA

Fig. 1: Illustration of interaction between controllers and compute nodes. There are one controller and four compute nodes

in a cloud. VMs of three VPCs are distributed in those nodes. VM1-1, VM1-2, VM1-3 and VM1-4 belong to VPC 1.

VM2-1, VM2-2, VM2-3 and VM2-4 belong to VPC 2. VM3-1, VM3-2, VM3-3 and VM3-4 belong to VPC 3. There is a

message queue server containing 2 queues in the second and third subplots. The three diagrams denote three different ways

of message delivery (RPC, NG and VITA).

divided into several groups, and each group of nodes shares

one queue. Though this solution can reduce the number of

required queues on the server, it brings a new challenge:

message redundancy on each compute node. Specifically,

once a compute node subscribes to one queue, it should

receive all the messages from this queue to catch valid

messages. Suppose that a compute node expects to receive

the network configuration message m1, and two messages

m1 and m2 are sent to the same queue. Under this situation,

the compute node will receive the redundant message m2

because the node can only judge whether the message is valid

or not after receiving it. In this way, message redundancy

is inevitable. The redundant messages will occupy valuable

network bandwidth and memory of compute nodes, resulting

in a decrease in the overall throughput. For example, when

10,000 compute nodes are divided into 100 groups in a

practical scenario, each compute node in the same group

will receive the same set of messages while about 99% of

messages are redundant. This will significantly reduce the

resource utilization of compute nodes.

The underlying cause for high message redundancy is that

NG’s tight dependency on physical network topology does

not align with the fundamental requirements of southbound

message delivery in a multi-tenant cloud environment. That

is, although VMs of a specific tenant are distributed in

multiple nodes (likely across node groups), they are bounded

to a logical concept called virtual networks [22]. Its imple-

mentation by cloud provider is Virtual Private Cloud (VPC)

[23, 24], which is a virtual L2 overlay built on top of

L3 underlay network. VPC offers isolation and privacy for

tenants, and allows tenant admins to configure IP ranges,

subnets, security groups, QoS policy with its boundary [23]–

[25]. Therefore, it is more efficient to aggregate messages

with VPC (instead of compute node) as the granularity to

achieve low message redundancy.

In this paper, we design a virtual network topology-

aware southbound message delivery system, called VITA.

Specifically, we use VPC as the granularity to aggregate

southbound messages. At the same time, considering a large

number of VPCs, how to aggregate messages of these VPCs

into a limited number of message queues with both low

control overhead and low message redundancy is also very

difficult. To solve this issue, we propose two algorithms,

submodular based approximation algorithm and simulated

annealing based algorithm, to solve different scenarios. Both

experiment and simulation results show that VITA dramati-

cally reduces the total traffic amount of redundant messages

by 45%-75% and reduces the control overhead by 33%-80%

compared with state-of-the-art solutions.

II. MOTIVATION AND VITA OVERVIEW

A. A Motivation Example

This section gives an example to illustrate the pros and

cons of both RPC and NG. A simple example of south-

bound message delivery is illustrated in Fig. 1. There are

1 controller, 4 compute nodes and 3 VPCs in the cloud. The

VMs of 3 VPCs are distributed on those compute nodes.

Specifically, VMs of VPC 1 are deployed on compute nodes

n1 (VM1-1), n2 (VM1-2, VM1-3) and n3 (VM1-4). VMs

of VPC 2 are deployed on compute nodes n1 (VM2-1), n2

(VM2-2), n3 (VM2-3) and n4 (VM2-4). VMs of VPC 3 are

deployed on nodes n1 (VM3-1), n3 (VM3-2) and n4 (VM3-3,

VM3-4). For ease of explanation, we assume that the control

plane will send a network configuration message for each

VPC. The performance results are summarized in Table I.

RPC establishes connections between the controller and

all compute nodes in Fig. 1(a). If a message will be sent to

a VPC, the controller sends this message to the destination

nodes, which contain VMs of this VPC, in turn. A mapping

table is maintained in the database to record the mapping

relationship between the VPCs and the compute nodes.

To realize the southbound message delivery, the controller

queries this table and determines compute nodes to which

the messages should be sent. For example, to process the

3

schemes n1 n2 n3 n4 data plane control plane
RPC 3 2 3 2 10 10
NG 3 3 3 3 12 6

VITA 3 2 3 3 11 3

TABLE I: The number of messages received by each compute

node, received by the data plane, and sent by the control plane

through three delivery schemes.

configuration message of VPC 1, the controller queries the

database and obtains the IP addresses of compute nodes

(i.e., n1, n2 and n3). Then, the controller will send the

configuration messages to these three nodes through RPC.

As a result, the controller sends 10 messages in total and the

data plane receives 10 messages accordingly.

The Node Grouping (NG) method divides the four com-

pute nodes into two groups, as shown in Fig. 1(b), and uses a

message queue server for storing and forwarding messages.

All the queues are identified by topics. The controller sends

message to one queue by publishing messages to a topic,

and each compute node receives messages from one queue

by subscribing to a topic. The MQ server in this example

contains two queues, which are identified by topics group1
and group2, respectively. On processing the configuration

message of VPC 1, the controller queries the database and

obtains the nodes which require this message. The nodes

n1 and n3 are in group 1 and group 2, separately. So, the

controller should send two messages with the same content

to the MQ server. One is published to topic group1, and

the other is to topic group2. In all, the controller sends 6

messages in total. However, as the compute nodes in the

same group will receive all the messages from a queue, a

node will receive some invalid messages. For example, node

n2 receives 3 messages of VPCs 1, 2, and 3, but only 2

messages from VPCs 1 and 3 are necessary. Node n4 receives

3 messages with 1 unnecessary message of VPC 1. As a

result, all the compute nodes in the data plane receive 12

messages, 2 of which are unnecessary.

B. Our Intuition

We observe that the two solutions of southbound message

delivery have advantages and disadvantages. RPC allows

each compute node to receive only the required messages

without any redundancy. In small-scale clouds, perhaps this is

the most proper solution. However, in large-scale distributed

cloud scenarios, the pressure of the control plane will be

weighty, and the message delivery latency may be very high

[11]. As for the node grouping solution, the pressure of the

control plane can be reduced while the load on the data plane

(redundant messages) significantly increases.

A question immediately following the above discussion

is that can we do better by using MQ with less redundant
messages and low control overhead? Clearly, we should use

as many queues as possible for southbound message delivery.

However, too many queues will lead to frequent crashes of

the message queue server [20]. Therefore, how to effectively

aggregate many messages into a limited number of queues is

necessary. As mentioned above, southbound messages have

not only physical attributes (e.g., IP address of the destination

node) but also virtual attributes (e.g., VPC ID) under the

virtual private cloud architecture. Moreover, messages from

the same VPC are more likely to be sent to the same virtual

address in the virtual network [26, 27]. In other words,

aggregating and delivering southbound messages according

to the attributes of the VPC is more intuitive and efficient

than existing solutions.

As shown in Fig. 1(c), since there are 3 VPCs and 2 queues

in this example, the controller aggregates the messages of

VPCs 1 and 2, and sends these messages to the same

queue (with topic vn1). Meanwhile, the controller sends the

messages of VPC 3 to another queue (with topic vn2). Each

compute node subscribes to different topic(s) according to

the messages it needs. For example, because node n2 only

needs the messages of VPCs 1 and 2, it only subscribes to

topic vn2. Similarly, since node n4 needs the messages of

VPCs 2 and 3, it should subscribe to both topics vn1 and

vn2. Accordingly, the controller sends 3 messages, and all the

compute nodes in the data plane totally receive 11 messages,

1 out of which is unnecessary. As a result (shown in Table

I), this scheme achieves lower control overhead compared

with RPC, and achieves better data/control plane performance

compared with NG. Motivated by this example, we design a

virtual network topology-aware southbound message delivery

scheme, called VITA.

...

VPC
Controller

MQ Server

...

QueryingPublish
messages

Receive
messages

Querying

Database

Agent

VMs

Agent

VMs
Configure
network

Subscribe
to topic

1 topic1
2 topic2
... ...

VPC TOPIC

Fig. 2: Overall system overview and workflow of VITA.

C. System Overview and Workflow of VITA

As shown in Fig. 2, VITA mainly consists of three parts:

the control plane (composed of the controllers), the data

plane (composed of the compute nodes), and the message

queue server. Specifically, the control plane consists of a

set of distributed microservices, and one of its functions is

to manage the virtual network through southbound message

delivery. In order to build the correspondence between VPCs

and topics, a mapping table from VPCs to topics, instead of

VPCs to IPs, is maintained. We will describe in detail how

to determine the correspondence in Section III. In the data

plane, VMs belonging to different VPCs are distributed on

different compute nodes. For more efficient implementation,

a control agent is designed on each node to be responsible for

subscribing to topics, distinguishing messages, and parsing

requests. The agent manages all virtual machines on the node

4

and knows to which VPCs they belong. As an important com-

ponent, the MQ server is responsible for the asynchronous

communication between the control and data planes.

Fig. 2 also briefly describes the system workflow. The

system process is mainly triggered by two events. One is

the launch of a new VM on the compute node. When a VM

is added or migrated, the control agent queries the database to

get the topics. Then it subscribes to those topics for receiving

the required messages of different VPCs. The other one is the

configurations by a tenant. When one tenant configures their

VPC through provided API (e.g., subnet, security group), the

control plane parses the request and constructs corresponding

southbound messages. Then it queries the database and de-

termines which topic(s) the messages should be published to.

Next, the controller sends the messages to specified queues

and asynchronously waits for the reply of the processing

result. Finally, the agent receives messages from specific

queues and judges whether it is valid or not according to

the VPC ID of the message. If no VM needs this message, it

will be discarded. Otherwise, the control agent will perform

corresponding operations (e.g., setting IP, configuring routing

table) on VMs according to the content of the message and

return the operation result to the control plane. In this way,

VITA can realize the decoupling of the control plane and the

data plane.

III. PROBLEM FORMULATION AND ALGORITHM DESIGN

A. Network Models

A typical cloud consists of the control plane and the

data plane. Specifically, a cluster of controllers constitute

the control plane, and are responsible for managing the

network, including southbound message delivery. The data

plane consists of a set of compute nodes, and is responsible

for providing computing resources for tenants. We use N =
{n1, n2, ..., n|N |} to represent the set of compute nodes. The

set of VPCs in the cloud is denoted as V={v1, v2, ..., v|V |}.

Tenants create VPCs in the cloud by deploying VMs on

compute nodes.

We adopt the MQ model to implement southbound mes-

sage delivery. Specifically, an MQ server containing a set of

queues, serves as the messaging middlebox in a cloud and

adopts the publish/subscribe model [28, 29]. The queues are

responsible for storing and forwarding southbound messages

from the control plane to the data plane. Each queue is

identified by a topic. When the controller sends messages

to one queue, we say that the controller publishes messages

to the topic. The compute nodes receive messages from a

queue by subscribing to the corresponding topic. The topic

set is defined as T = {t1, t2, ..., tK}, where K = |T | is the

number of queues in the MQ server.

B. Problem Formulation

The section gives the formulation of the virtual network

southbound message delivery (VSMD) problem. Specifically,

we use VPC as the granularity to aggregate southbound

messages. Due to the prior work of traffic matrix prediction

in clouds [30, 31], it is reasonable to assume that we can

obtain the expected traffic intensity of southbound messages

for each VPC v ∈ V , which is denoted as f(v).
The key step of VSMD is to determine to which queue(s)

the controllers should deliver each message, and from which

queues each compute node receives messages. Thus, we

use binary variable ytv to denote whether the controller will

publish the messages of VPC v to topic t or not. Meanwhile,

we use binary variable ztn to represent whether the compute

node n will subscribe to topic t or not.

In order to deliver southbound messages successfully,

we should consider the following two constraints. 1) Each

compute node must obtain all the required messages. That

is, each compute node should receive the messages of VPC

v if a VM belonging to v is deployed on this node. The

constant Γv
n indicates whether the compute node n contains

the VMs belonging to VPC v or not. 2) The traffic amount

of messages on each node should not exceed its capacity.

We use s(n) to denote the message processing capability

of node n. Once a compute node subscribes to a topic, it

will receive all the messages in this queue, which results in

message redundancy. Thus, our objective is to minimize the

total traffic amount on compute nodes (or in the data plane).

We give the following problem definition:

min
∑
n∈N

b(n)

S.t

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
t∈T yt

v ≥ 1, ∀v ∈ V∑
t∈T ztny

t
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V ztny

t
vf(v) = b(n), ∀n ∈ N, v ∈ V

b(n) ≤ s(n), ∀n ∈ N

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(1)

The first set of inequalities indicates that each VPC sub-

scribes to at least one topic. The second set of inequalities

represents that all the VMs on any compute node should

receive all the required messages. The third set of equalities

shows the message traffic amount on each compute node

n, denoted as b(n). The fourth set of inequalities expresses

the message processing capacity constraint on each compute

node n. Our objective is to minimize the total message traffic

amount on compute nodes, that is, min
∑

n∈N b(n).

Theorem 1 The VSMD problem is NP-hard.

We prove the NP-hardness by showing that the Weighted Set

Covering Problem (WSCP) [32] is a special case of VSMD.

Due to space limit, we omit the detailed proof here.

C. Algorithm Design for VSMD

1) Algorithm Overview: If the controller sends the mes-

sages of each VPC to only one queue, the total traffic amount

of messages delivered by the controller can be minimized.

Considering that the controller is often the bottleneck in

a cloud, it is reasonable to assume that messages of each

VPC are sent to only one queue. To deal with this scenario,

this section presents a submodular-based approximation al-

gorithm to solve the VSMD problem. We will consider the

scenario where the messages of each VPC can be forwarded

to more than one queue in the next section.

5

In this section, we regard that the messages of each VPC

are sent to only one queue. As a result, the VPC set can be

divided into K subsets, and each VPC in the same subset is

assigned with the same topic. Initially, all VPCs belong to

the same set. Our algorithm consists of K iterations where

K is the number of queues (i.e., the number of topics) in

the MQ server. In each iteration, we determine a subset of

V that can reduce the total traffic amount of messages the

most and assign all the VPCs in this subset with one topic.
2) Preliminaries: We first give the definition of the traffic

amount of messages of VPC set V ′ ⊆ V as follows:

Definition 1 For any VPC set V ′, the total traffic amount of
messages of all the VPCs in V ′ is

R(V ′) = |Sub(V ′)|
∑

v∈V ′

f(v) (2)

where Sub(V ′) is the set of compute nodes which contain
VMs belonging to any VPC v ∈ V ′.

We need to divide the VPCs into K sets so that messages

of each VPC will be published to one of K topics. Initially,

when all the VPCs belong to one set, the total traffic amount

of messages on all compute nodes can be expressed as

R(V) = |N | · ∑v∈V f(v), where |N | is the number of

compute nodes. If we divide VPCs into K sets, denoted

as {V1, V2, ..., VK}, the traffic amount of all southbound

messages becomes
∑K

i=1 R(Vi). In other words, the traffic

amount of messages will be reduced as much as possible by

dividing VPCs into K sets. That means the minimization

problem in Eq. (1) can be converted into the following

equivalent maximization problem:

maxR(V)−
K∑
i=1

R(Vi)

S.t

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
t∈T yt

v ≥ 1, ∀v ∈ V∑
t∈T ztny

t
v ≥ Γv

n, ∀n ∈ N, v ∈ V∑
t∈T

∑
v∈V ztny

t
vf(v) ≤ s(n), ∀n ∈ N, v ∈ V

yt
v, z

t
n ∈ {0, 1}, ∀v, n, t

(3)

This problem is similar to a clustering problem, where we

need to divide the VPC set V into K clusters to maximize the

traffic amount reduction on compute nodes. Our algorithm is

based on efficient computations of a submodular set function

ϕ, which defines the maximum traffic amount reduction of

messages by dividing the VPCs into several sets. We give

the definition of the submodular set function ϕ as follows.

Definition 2 Given the set Φ, which contains disjoint subsets
of V , the traffic amount reduction of messages achieved by
dividing the VPCs according to Φ is defined as:

ϕ(Φ) = R(V)−
∑

S∈Φ

R(S)−R(V −M) (4)

where M is the set of VPCs that can be covered by all the
sets in Φ. That is, M =

⋃
S∈Φ S.

Next, we give the definition of submodularity, and prove

that the function ϕ is submodular.

Definition 3 (Submodularity): Given a finite set E, a real-
valued function z on the set of subsets of E is called

submodular if z(S ∪ {e}) − z(S) ≤ z(S′ ∪ {e}) − z(S′)
for all S′ ⊆ S ⊆ E and e ∈ E − S.

Lemma 2 Given the set U as the power set of V , the
function ϕ defined in Eq. (4) is submodular on U .

Proof: Without loss of generality, we consider an arbi-

trary set Φ ⊆ U and an arbitrary set A ⊆ V . Assume that A
does not intersect with other sets in Φ, i.e., A∩S = ∅, ∀S ∈
Φ. Then, we have

ϕ(Φ∪{A})−ϕ(Φ) = R(V−M)−R(V−M−A)−R(A) (5)

where M =
⋃

S∈Φ S. Given an arbitrary subset Φ′ ⊆ Φ, it

also follows

ϕ(Φ′∪{A})−ϕ(Φ′) = R(V−M ′)−R(V−M ′−A)−R(A) (6)

where M ′ =
⋃

S∈Φ′ S.

Note that R(V−M)−R(V−M−A)−R(A) also represents

the traffic amount reduction by dividing set V −M into two

subsets: V−M−A and A. Since Φ′ is the subset of Φ, V −M
is the subset of V −M ′ accordingly. Thus, we have:

R(V−M)−R(V−M−A) ≤ R(V−M ′)−R(V−M ′−A) (7)

Combining Eqs. (5), (6) and (7), we know that:

ϕ(Φ ∪ {A})− ϕ(Φ) ≤ ϕ(Φ′ ∪ {A})− ϕ(Φ′) (8)

According to Definition 3, we show that the set function ϕ
is submodular.

To maintain the processing capacity constraint of a single

compute node n, i.e., b(n) ≤ s(n), we only focus on the set

A ⊂ V without breaking the constraint, that is,∑

v∈A

f(v) ≤ minn∈Sub(A) s(n) (9)

We call the sets satisfying Eq. (9) as feasible sets. The

feasible sets can be explored efficiently by simply performing

a depth-first search [33] on the VPC set V . We omit the

detailed description here due to space limit.

3) Algorithm Description: Given these insights, we pro-

pose the submodular-based southbound message delivery

algorithm (SM-SMD) in detail, which is formally described

in Alg. 1. SM-SMD consists of three steps. In the first step,

the algorithm computes a set of feasible sets Π in advance

and starts with an empty set Φ (Line 3). In the second

step (Lines 5-12), it loops through the possible feasible set

S ∈ Π to find the maximum function value ϕ(Φ ∪ {S}).
The algorithm performs K − 1 iterations until we obtain K
sets of VPCs. In the third step (Lines 13-17), we obtain the

mapping relationship between VPCs and topics (i.e., ytv).

4) Performance Analysis: We analyze the approximation

performance of our proposed algorithm based on the follow-

ing lemma.

Lemma 3 For a real-valued submodular and non-
decreasing function z(S) on U , the optimization problem
maxS⊆U{z(S) : |S| ≤ K, z(S) is submodular} can reach
a (1-1/e) approximation factor if the algorithm performs
greedily [34].

Theorem 4 Our SM-SMD achieves a (1-1/e) approximation
factor for the maximization problem in Eq. (3).

Proof: The function ϕ is submodular by Lemma 2.

Besides, for any set Φ of subsets of V and A ⊆ V with

6

Algorithm 1 SM-SMD: Submodular-based Algorithm for

VSMD
1: Step 1: Initialization
2: Compute the set of feasible sets Π
3: Φ ← ∅
4: Step 2: Greedy Selection
5: while |Φ| ≤ K − 1 do
6: Set tmp ← 0, opt ← 0
7: for S ∈ Π− Φ do
8: tmp ← ϕ(Φ ∪ {S})
9: if tmp > opt then

10: opt ← tmp, S∗ ← S
11: Φ ← Φ+ {S∗}
12: Φ ← Φ+ {V −⋃

S∈Φ S}
13: Step 3: Assignment of VPCs and Topics
14: i ← 1
15: for S ∈ Φ do
16: Set ytiv = 1 if v ∈ S
17: i ← i+ 1

A ∩ S = ∅, ∀S ∈ Φ, it follows ϕ(Φ ∪ {A}) − ϕ(Φ) ≥ 0,

and the equal sign is held only in the case where Sub(V −⋃
S∈Φ S) = Sub(A). Thus, the function ϕ is non-decreasing.

By Lemma 3, our proposed algorithm can reach a (1− 1/e)
approximation factor for the VSMD problem in Eq. (3).

Note that the number of feasible sets may be exponential.

However, the work [35] has shown that polynomial number

of feasible sets are enough for performance optimization.

To achieve the trade-off optimization between algorithm

complexity and network performance, we only construct the

polynomial number (with input the number of VPCs) of

feasible sets. Under this condition, the time complexity of

SM-SMD is O(K|V |) since the algorithm runs in K − 1
iterations, and the function ϕ is calculated O(|V |) times in

each iteration.

D. Simulated Annealing Algorithm for VSMD

The SM-SMD algorithm considers the scenarios where the

control plane may be the bottleneck in a cloud. However,

in some other scenarios, the data plane is more likely to

become a bottleneck [36, 37]. Under these scenarios, we

hope to reduce more traffic amount of messages in the data

plane. To this end, we give a simulated annealing based

southbound message delivery algorithm where southbound

messages of one VPC can be sent to more than one queue

(i.e.,
∑

t∈T ytv ≥ 1). It should be noted that this algorithm

will increase the control overhead and MQ overhead com-

pared with SM-SMD, but reduce traffic amount on compute

nodes. (i.e., reduce the message redundancy).

Simulated annealing [38] is a probabilistic optimization

algorithm which takes L, t0, tm, and α as inputs. L is the

number of iterations at each temperature T . t0 and tm are

the initial value and the end threshold of the temperature T ,

respectively. α is the decreasing rate of T . The temperature

T is used to determine the probability of accepting the worse

state. Note that, the parameter selection of the simulated

annealing algorithm has been extensively studied [38, 39].

We determine the parameters based on the work [38] to

achieve a high probability for converging to the global

optimal solution.

SA-SMD first initializes the parameters and the initial

state. As SM-SMD can obtain a feasible assignment of VPCs

and topics, SA-SMD takes the results of SM-SMD as the

initial state. Then it executes a two-level iteration. In the

each round of the inner iteration (Lines 4-11), the algorithm

randomly selects a VPC and a topic to change their mapping

relationship (i.e., ytv = 1 − ytv) (Lines 6-7) and calculates

the difference in the total traffic amount of messages on all

compute nodes by re-selecting topics, denoted as Δ (Line

8). If Δ ≤ 0, it means that the message redundancy is

reduced, and we accept the current state. Otherwise, we

refuse the current state with probability 1−e−
Δ
T (Lines 9-10).

Each inner iteration runs in L rounds. In the outer iteration,

temperature T is decreased by a factor α at the end of the

inner iteration (Line 13). Then, if T ≥ tm, the algorithm

terminates and outputs the final result. Otherwise, it performs

a new inner iteration with a decreased temperature. The SA-

SMD algorithm is formally described in Alg. 2.

Algorithm 2 SA-SMD: Simulated Annealing based Algo-

rithm for VSMD
1: Input L, t0, tm,α
2: Run SM-SMD to obtain the solution: ytv and ztn = Γv

ny
t
v

3: Init temperature T = t0, k = 0
4: while T ≥ tm do
5: while k ≤ L do
6: Select a random VPC v and a random topic t
7: Set ytv ← 1− ytv .

8: Set Δ to be difference of total traffic amount by

topic re-selection.

9: if Δ > 0 then
10: Set ytv ← 1− ytv with probability 1− e−

Δ
T

11: k ← k + 1
12: Set k = 0
13: T ← αT
14: Output the results

In each round of the inner iteration, the algorithm calcu-

lates the difference of traffic amount received by each com-

pute node by re-selecting topics, which costs O(|N |) time.

This calculation loops L times at each temperature T , which

drops from t0 to tm at the decreasing rate of α. Thus, we

execute the calculation for logα(tm/t0) times and the overall

time complexity of SA-SMD is O(L · logα(tm/t0) · |N |).

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

This paper studies how to deliver southbound messages

in clouds with low control overhead and low message redun-

dancy. The code is open-source and available at https://github.

com/futurewei-cloud/vita. We adopt five main metrics for

performance evaluation. (1) The control overhead represents

the resource consumption of the controller for southbound

7

�� �� �� �� �� �� � � 	

�1�R�����R�I���9�3�&�V���x104�

��

����

����

����

����

����

�&
�R
�Q
�W�U
�R
���
�2
�Y
�H
�U�
�H
�D
�G
���

�E
�S
�V
� �5�3�&

�1

�9$�7�$���6�$

�9$�7�$��)�0

�9$�7�$���6�0

Fig. 3: Control Overhead vs.

No. of VPCs

�� �� �� �� �� �� � � �

�1�R�����R�I���9�3�&�V���x104�

��

��

����

����

����

����

�0
�4
���2
�Y
�H
�U�
�H
�D
�G
���
�
�E
�S
�V
�

�1�

�9!�7�$���6�$

�9!�7�$��&�0

�9!�7�$���6�0

Fig. 4: MQ Overhead vs. No.

of VPCs

�� �� �� �� �� �� � � 	

�1�R�����R�I���9�3�&�V���x104�

��

����

������

������

������

������

������

������

�7
�R

�W�D
���
�7
�U�D

�I�I
��F

���
�

�E
�S

�V
�

�1�

�9 �7�$��#�0

�9 �7�$���6�0

�9 �7�$���6�$

�5�3�&

Fig. 5: Total Traffic vs. No.

of VPCs

�� �� �� �� �� �� � � 	

�1�R�����R�I���9�3�&�V���x104�

��

��

��

��

��

�0
�D
�
����
�7
�U�D

�I�I
��F

���
�

�E
�S

�V
�

�1�

�9 �7�$��#�0

�9 �7�$���6�0

�9 �7�$���6�$

�5�3�&

Fig. 6: Max. Traffic vs. No.

of VPCs

message delivery. In the testbed experiment, we measure

the controller’s CPU utilization during system running as

the control overhead. Meanwhile, we record the total traffic

amount of messages sent by the controller as the control

overhead in large-scale simulations. (2) The MQ overhead
indicates the resource consumption of the MQ server to

process southbound messages. According to [20], disk I/O

utilization is the main performance bottleneck of the MQ

server. Thus, we use disk I/O utilization as the MQ overhead

in the testbed experiment. As for large-scale simulations, we

measure the total traffic amount of the messages through the

MQ server as the MQ overhead. (3) The total traffic amount
of all compute nodes. (4) The maximum traffic amount of

all compute nodes. We measure the total traffic amount

of southbound messages received by each compute node,

and calculate the total (or maximum) value of all compute

nodes as the third (or the fourth) metric. (5) The average
message delivery delay. We record the time interval from the

controller sending the southbound message to the compute

node receiving the message as the message delivery delay. We

compute the average delivery delay of all messages during

the system running as this metric.

In this paper, we propose two message aggregation and

distribution algorithms, SM-SMD and SA-SMD, based on

VITA. We denote the corresponding schemes as VITA-SM

and VITA-SA, respectively. To evaluate the performance of

our VITA-SM and VITA-SA, we choose the following three

state-of-the-art solutions as benchmarks.

1) The first one is RPC [9], which is a widely used method

in distributed microservice framework for communi-

cations between servers and clients. In clouds, RPC

establishes TCP connections between the controller and

all compute nodes. Messages are sent from the controller

to corresponding compute nodes one by one.

2) The second one is NG [21], which performs southbound

message delivery using message queues. To deal with

a limited number of message queues on the server,

compute nodes are divided into certain groups according

to a certain attribute (such as physical location). The

nodes in the same group will subscribe to a same topic

(i.e., queue) and receive the same messages.

3) The third one is denoted as VITA-KM. Since there is no

exact work about southbound message delivery based on

virtual network topology, we use the classic clustering

algorithm, K-means [40], to aggregate and distribute

messages with VPC as the granularity. VITA-KM takes

the number of topics as the input k, and divides the set

of VPCs into k clusters.

B. Simulation Evaluation

We refer to a practical private cloud deployed in CERN

(European Organization for Nuclear Research) [4] to design

our simulation. The CERN private cloud contains 5,500

compute nodes. We change the scale of the virtual network

by varying the number of VPCs from 1 × 104 to 9 × 104.

We assume that the VMs are distributed on the compute

nodes randomly, and the number of topics is set to 1,100

by default. As a result, NG divides the compute nodes into

1,100 groups, and each group contains 5 compute nodes. The

expected message traffic intensity for each VPC is set as

1Mbps. Moreover, we use power law for the message-size

distribution, where 20% of all messages account for 80% of

traffic volume as observed in [41].

We observe the control overhead, the MQ overhead, and

the total/maximum traffic amount on compute nodes by

changing the number of VPCs in the cloud. The results

are shown in Figs. 3-6. Specifically, Fig. 3 shows that the

control overhead of all solutions increases with the increas-

ing number of VPCs, and the growth rate of VITA-based

solutions is significantly slower than that of RPC and NG.

For example, given 7× 104 VPCs, the control overheads of

VITA-SM, VITA-KM, and VITA-SA are 3.6Gbps, 3.6Gbps,

and 6.8Gbps, respectively, while those of RPC and NG are

35.1Gbps and 17.5Gbps, respectively. It means that VITA-

based solutions can reduce the control overhead by over 80%

and 60% compared with RPC and NG, respectively. That

is because the more messages delivered by the controller,

the higher its control overhead. Specifically, the controller

directly communicates with compute nodes by RPC, and

each compute node only receives the required messages.

NG reduces the control overhead by 50.1% compared with

RPC by adopting the MQ model but still results in a higher

control overhead compared with VITA-based solutions. The

reason is the nodes are grouped based on the physical net-

work topology, resulting in significant differences in required

messages of nodes in the same group. As for three VITA-

based solutions, both VITA-SM and VITA-KM can reduce

the control overhead by about 47% compared with VITA-

SA. That is because VITA-SA may send the same message

to multiple queues, while VITA-SM and VITA-KM only send

each message to exactly one queue.

Fig. 4 shows the MQ overhead of NG and three VITA-

based algorithms by changing the number of VPCs. Note

that we do not evaluate this metric for RPC since RPC does

not use the MQ model. The results of the MQ overhead are

of a similar trend with those of the control overhead for

these algorithms. That is because both control overhead and

8

��D�I��D �5�D�E�E��W�0�4 �3�X�V�D�U

������

�����

������

������

������

������

�����

������

�&
�3
�8
���X
�W�
�
�
�D
�W�
�R
�Q
���R
�I��
�F
�R
�Q
�W�U
�R

�H
�U��
���
�

�1�

�9��7�$���6�0

�9��7�$���6�$

�9��7�$����0

(a) Control Overhead vs. MQ Type

��D�I��D �5�D�E�E��W�0�4 �3�X�V�D�U
��

����

����

����

���

�'
��V

�
���X

�W�
�
�
�D
�W�
�R
�Q
���R

�I��
�0

�4
���V

�H
�U�Y

�H
�U��

���
�

�1�

�9��7�$���6�0

�9��7�$���6�$

�9��7�$����0

(b) MQ Overhead vs. MQ Type

��D�I��D �5�D�E�E��W�0�4 �3�X�V�D�U
��

��

����

����

����

����

�$
�Y
�H
�U�D
�
�H
���'
�H
�D
�
��P
�V
�

�1�

�9��7�$���6�0

�9��7�$���6�$

�9��7�$����0

(c) Average Delay vs. MQ Type

��D�I��D �5�D�E�E��W�0�4 �3�X�V�D�U
��

������

������

������

������

������

������

�7
�R
�W�D
��
�7
�U�D
�I�I
��F
���
�0
�E
�S
�V
�

�1�

�9��7�$���6�0

�9��7�$���6�$

�9��7�$����0

(d) Throughput vs. MQ Type

Fig. 7: The performance of proposed algorithms using different MQs.

MQ overhead are positively correlated with the total traffic

amount of southbound messages. For instance, when there

are 5 × 104 VPCs, the MQ overheads of VITA-SM, VITA-

KM, and VITA-SA are 2.5Gbps, 2.5Gbps, and 4.9Gbps,

respectively, while that of RPC is 12.4Gbps. That is, both

VITA-SM and VITA-KM can reduce the MQ overhead by

about 79.8% and 60.5% compared with NG and VITA-SA,

respectively.

Figs. 5-6 show that the total/maximum traffic amount on

compute nodes increases for all solutions with the increasing

number of VPCs. RPC and NG achieve the lowest and

highest total/maximum traffic amount on compute nodes

among all solutions, respectively. That is because RPC using

the direct communication method will not cause message

redundancy, while NG using a physical host-based grouping

scheme will result in high redundancy. Note that, since RPC

will cause an unacceptable control overhead as shown in

Fig. 3, it is not feasible in large-scale clouds. We use the

total/maximum traffic amount on compute nodes of RPC as

the low bound to compare with other solutions. For example,

given 6× 104 VPCs in the cloud, the total traffic amount on

compute nodes is 61Gbps, 65Gbps, and 90Gbps for VITA-

SA, VITA-SM, and VITA-KM, respectively, while that of

NG is 198Gbps. These results mean that VITA-SM reduces

the total traffic amount on compute nodes by 29% and

66% compared with VITA-KM and NG, respectively, while

slightly increases the traffic amount on compute nodes by

6% compared with VITA-SA. The total/max traffic amount

on compute nodes of VITA-SA is lower than that of VITA-

SM because it sends messages to more queues with higher

control overhead to achieve lower message redundancy.

From these simulation results, we can draw some con-

clusions. First, as shown in Fig. 3, RPC is not feasible

in large-scale clouds because it will cause unacceptable

control overhead. Second, as shown in Figs. 3-6, VITA-

based solutions can achieve superior performance, includ-

ing lower control/MQ overhead and lower total/max traffic

amount compared with NG. Third, VITA-SM reduces the

total/maximum traffic amount by 29%/37% and achieves sim-

ilar control/MQ overhead performance compared with VITA-

KM. Fourth, compared with VITA-SA, VITA-SM reduces

the control/MQ overhead by 47%/49% and increases the

total/maximum traffic amount by 6%/15%.

C. System Implementation

1) Implementation on the Platform: In general, we use 10

servers running Ubuntu 18.04 with Linux kernel 5.4 to build

the testbed. All the servers are equipped with a 22-core Intel

Xeon 6152 processor, 128GB memory and an Intel X710

10GbE NIC. Among them, two servers are used as the con-

troller and the message queue server, respectively. We take a

small cloud deployed in GoDaddy [42] as a reference, which

contains 350 compute nodes. We rely on the virtualization

technology for system implementation to expand the testing

topology and collect testing data conveniently. Specifically,

we deploy 350 VMs, each equipped with 1 vCPU and 1GB

memory, as compute nodes on the remaining 8 servers. The

number of VPCs and topics is by default set to 300 and 100.

We run three sets of experiments on the platform. The

expected traffic intensity for messages of each VPC is set to

1Mbps and the bandwidth constraint of each compute node is

1Gbps by default. The message-size distribution is the same

as in simulations where 20% of all messages account for

80% of traffic amount. These messages are distributed in size

from 512Bytes to 4MB. According to [43], we generate two

types of messages: (1) unicast messages, whose sources and

destinations are randomly picked, e.g., IP address segment

configuration messages; (2) multicast messages, which sim-

ulate the traffic with multiple destinations, e.g., subnet and

security group configuration messages. Each type of message

accounts for half of the total traffic amount.

2) Test Results: The first set of experiments compares

the overall performance of all benchmarks using three well-

known MQ frameworks. Specifically, we take three open-

source MQ frameworks for comparison: Apache Kafka (ver-

sion 2.6.0) [44], RabbitMQ (version 3.8.19) [45], and Apache

Pulsar (version 2.6.1) [46]. Kafka is the most widely de-

ployed open-source MQ framework, and RabbitMQ is used

in OpenStack. As for Pulsar, it is one of the fastest-growing

MQ frameworks in recent years. The physical parameter

settings of these MQ frameworks are the same as in [20].

We set 100 topics for each MQ framework and gener-

ate 200 VPCs by default. As shown in Fig. 7, VITA-SM

performs better compared with NG and VITA-KM in all

three MQ frameworks. Moreover, VITA-SM achieves lower

control/MQ overhead, but results in higher message delay and

higher total traffic amount on compute nodes than VITA-SA.

That means, VITA-SM is more suitable for scenarios with

limited processing capacity on the control plane or the MQ

server, while VITA-SA is more suitable for scenarios with

limited processing capacity on compute nodes. Note that,

as shown in Figs. 7(c)-7(d), RabbitMQ achieves the lowest

total traffic amount, while achieves the smallest message

delivery delay, compared with the other two frameworks.

The reason is that RabbitMQ aims to obtain low message

transmission delay, while the total throughput cannot be

guaranteed. To save the space, we only conduct a detailed

9

���� ������ ������ ������ ������ ������

�1�R�����R�I���7�R�S�F�V

������

������

������

������

������

�&
�3

�8
���X

�W
�
�
�D
�W

�R
�Q

���R
�I��

�F
�R

�Q
�W�U

�R
��
�H
�U��

���
�

�1�

�9 �7�$���6�$

�9 �7�$��$�0

�9 �7�$���6�0

(a) Control Overhead vs. No. of Topics

���� ������ ������ ������ ������ ������

�1�R�����R�I���7�R�S�F�V

����

����

����

����

����

���

���

�'
�V
�
���X
�W
�
�
�D
�W
�R
�Q
���R
�I��
�0
�4
���V
�H
�U�Y
�H
�U��
!��

#

�1$

�9&�7�$���6�$

�9&�7�$��*�0

�9&�7�$���6�0

(b) MQ Overhead vs. No. of Topics

���� ������ ������ ������ ������ ������

�1�R�����R�I���7�R�S�F�V

��

����

����

���

������

������

������

�����

������

�$
�Y
�H
�U�D

�
�H
���'

�H
��D

�
���
�P

�V
�

�1�

�9��7�$��!�0

�9��7�$���6�0

�9��7�$���6�$

(c) Average Delay vs. No. of Topics

���� ������ ������ ������ ������ ������

�1�R�����R�I���7�R�S�F�V

��

������

������

������

������

������

������

�7
�R
�W�D
���
�7
�U�D
�I�I
�F
���
�0
�E
�S
�V
�

�1�

�9��7�$����0

�9��7�$���6�0

�9��7�$���6�$

(d) Total Traffic vs. No. of Topics

Fig. 8: Control Overhead, MQ Overhead, Average Message Delay and Total Traffic vs. Number of Topics

�� �� �� � ���� ����

�1�R�����R�I���9�3�&�V���x102�

������

������

������

������

������

�&
�3
�8
���X
�W�
��
�
�D
�W�
�R
�Q
���R
�I��
�F
�R
�Q
�W�U
�R
��
�H
�U��
���
�

�1

�9!�7�$���6�$

�9!�7�$��&�0

�9!�7�$���6�0

(a) Control Overhead vs. No. of VPCs

�� �� �� � ���� ����

�1�R�����R�I���9�3�&�V���x102�

����

����

����

����

����

���

���

���

�'
��V
�
���X
�W�
��
�
�D
�W�
�R
�Q
���R
�I��
�0
�4
���V
�H
�U�Y
�H
�U��
���
�

�1%

�9&�7�$��*�0

�9&�7�$���6�$

�9&�7�$���6�0

(b) MQ Overhead vs. No. of VPCs

�� �� �� � ���� ����

�1�R�����R�I���9�3�&�V���x102�

����

����

����

����

����

����

���

�$
�Y

�H
�U�D

�
�H

���'
�H

��D
�

���
�P

�V
�

�1�

�9 �7�$��#�0

�9 �7�$���6�0

�9 �7�$���6�$

(c) Average Delay vs. No. of VPCs

�� �� �� � ���� ����

�1�R�����R�I���9�3�&�V���x102�

������

��������

��������

��������

�7
�R
�W�D

���
�7
�U�D

�I�I
��F

���
�0

�E
�S
�V
�

�1�

�9��7�$��!�0

�9��7�$���6�0

�9��7�$���6�$

(d) Total Traffic vs. No. of VPCs

Fig. 9: Control Overhead, MQ Overhead, Average Message Delay and Total Trafiic vs. Number of VPCs

performance comparison of all solutions when using Kafka

in the following since it is the most widely used framework.

The second set of experiments observes the control/MQ

overhead, average message delay, and total traffic amount of

NG, VITA-SA, VITA-KM and VITA-SM by changing the

number of available topics in the MQ server. The results are

shown in Fig. 8, where the horizontal axis is the number

of topics in the MQ server, ranging from 50 to 300. No

matter how many topics there are in the MQ server, NG

always achieves the worst performance compared with other

solutions. For example, as shown in Fig. 8(b), given 200 top-

ics, the average disk I/O utilization of VITA-SM, VITA-KM,

VITA-SA and NG is 34%, 38%, 40% and 63%, respectively.

That is, VITA-SM can reduce the average disk I/O utilization

by about 10.5%, 15% and 46% compared with VITA-KM,

VITA-SA and NG, respectively. We should note that, as

shown in Fig. 8(c), when the number of topics exceeds 200,

the average message delay will increase significantly as the

number of topics increases. That means the MQ server can

only support a limited number of topics. Thus, we should

carry out message aggregation with a proper granularity.

The third set of experiments compares the control/MQ

overhead, average message delay, and total traffic amount

of NG, VITA-SA, VITA-KM and VITA-SM by changing the

number of VPCs in the cloud. The results are shown in Fig.

9, where the number of VPCs ranges from 200 to 1,200.

As the number of VPCs increases, all performance metrics

(e.g., control overhead, MQ overhead, message delay and

total traffic amount) increase for all algorithms. NG always

achieves the worst performance compared with the other

three VITA-based solutions. For example, when the number

of VPCs reaches 1000, the average message delay of NG,

VITA-SA, VITA-KM and VITA-SM is 54ms, 29ms, 45ms

and 34ms. That means, VITA-SM can reduce the average

message delay by 37% and 24.4% compared with NG and

VITA-KM, respectively. VITA-based solutions are more effi-

cient compared with NG, since southbound messages usually

have VPC attributes, and VITA-based solutions aggregate

messages with VPC as the granularity.

From these experimental results, we can draw some con-

clusions. First, as shown in Fig. 7, VITA-SM performs

better in all three MQ frameworks compared with NG and

VITA-KM, and achieves similar performance compared with

VITA-SA. Second, Fig. 8 illustrates that the MQ server

can only support a limited number of topics. Thus, we

have to aggregate messages with a proper granularity. Third,

the performance of NG lags behind all three VITA-based

solutions for all metrics (e.g., control/MQ overhead, message

delay and traffic amount on compute nodes). Fourth, our pro-

posed VITA-SM performs better than VITA-KM, especially

in the metrics of message delay and total traffic amount,

which shows efficiency of our proposed message aggrega-

tion algorithm. Fifth, our proposed VITA-SM and VITA-

SA algorithms have different application scenarios. If the

control/MQ overhead become the network bottleneck, VITA-

SM is a better choice compared with VITA-SA. Conversely,

if resources on compute nodes are the network bottleneck,

VITA-SA is a better choice compared with VITA-SM.

V. CONCLUSION

In this paper, we give the system overview of VITA

and formulate the VSMD problem for minimizing the total

amount of messages received by compute nodes. We propose

a submodular-based algorithm for this problem and analyze

its approximation performance. We further consider how to

extend this scheme for more scenarios. Both the simulation

and experimental results show high efficiency of our pro-

posed VITA system.

ACKNOWLEDGEMENT

The corresponding authors of this paper are Gongming

Zhao and Hongli Xu. We would also like to thank Xuwei

Yang, Eric Li, James Chung for their contributions to this

work. This article was supported in part by the National

Science Foundation of China (NSFC) under Grants 61822210

and 62102392, and in part by the National Science Founda-

tion of Jiangsu Province under Grant BK20210121.

10

REFERENCES

[1] B. Varghese and R. Buyya, “Next generation cloud computing: New
trends and research directions,” Future Generation Computer Systems,
vol. 79, pp. 849–861, 2018.

[2] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “State-of-the-
practice in data center virtualization: Toward a better understanding of
vm usage,” in 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 2013, pp. 1–12.

[3] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in 2010
Proceedings IEEE INFOCOM. Ieee, 2010, pp. 1–9.

[4] T. Bell, B. Bompastor, S. Bukowiec, J. C. Leon, M. Denis, J. van
Eldik, M. F. Lobo, L. F. Alvarez, D. F. Rodriguez, A. Marino et al.,
“Scaling the cern openstack cloud,” in Journal of Physics: Conference
Series, vol. 664, no. 2. IOP Publishing, 2015, p. 022003.

[5] H. Qu, O. Mashayekhi, C. Shah, and P. Levis, “Decoupling the control
plane from program control flow for flexibility and performance in
cloud computing,” in Proceedings of the thirteenth euays conference,
2018, pp. 1–13.

[6] K. Zheng, L. Wang, B. Yang, Y. Sun, and S. Uhlig, “Lazyctrl: A
scalable hybrid network control plane design for cloud data centers,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 1,
pp. 115–127, 2016.

[7] S. Maheshwari, P. Netalkar, and D. Raychaudhuri, “Disco: Distributed
control plane architecture for resource sharing in heterogeneous mobile
edge cloud scenarios,” in 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 519–529.

[8] Y. Gong, B. He, and J. Zhong, “Network performance aware mpi
collective communication operations in the cloud,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 11, pp. 3079–3089,
2013.

[9] R. Thurlow, “Rpc: Remote procedure call protocol specification version
2,” RFC 5531, May, Tech. Rep., 2009.

[10] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “Darpc: Data center
rpc,” in Proceedings of the ACM Symposium on Cloud Computing,
2014, pp. 1–13.

[11] H. Kraft and R. Johansson, “Evaluating rpc for cloud-native 5g mobile
network applications,” 2020.

[12] grpc. Accessed: July. 20, 2021. [Online]. Available: https://grpc.io/

[13] Apache thrift. Accessed: July. 20, 2021. [Online]. Available:
https://thrift.apache.org/

[14] M. Fazio, A. Celesti, A. Puliafito, and M. Villari, “A message oriented
middleware for cloud computing to improve efficiency in risk manage-
ment systems,” Scalable Computing: Practice and Experience, vol. 14,
no. 4, pp. 201–213, 2013.

[15] C. Wang, H. Ni, and L. Liu, “An enhanced message distribution
mechanism for northbound interfaces in the sdn environment,” Applied
Sciences, vol. 11, no. 10, p. 4346, 2021.

[16] W. Lu, J. Jackson, and R. Barga, “Azureblast: a case study of
developing science applications on the cloud,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, 2010, pp. 413–420.

[17] N. M. Abd Elazim, M. A. Sobh, and A. M. Bahaa-Eldin, “Software
defined networking: attacks and countermeasures,” in 2018 13th Inter-
national Conference on Computer Engineering and Systems (ICCES).
IEEE, 2018, pp. 555–567.

[18] A. Hakiri, P. Berthou, A. Gokhale, and S. Abdellatif,
“Publish/subscribe-enabled software defined networking for efficient
and scalable iot communications,” IEEE communications magazine,
vol. 53, no. 9, pp. 48–54, 2015.

[19] J. Chen and B. Dezfouli, “Modeling control traffic in software-
defined networks,” in 7th IEEE International Conference on Network
Softwarization (NefSoft), 2021.

[20] P. Dobbelaere and K. S. Esmaili, “Kafka versus rabbitmq: A compara-
tive study of two industry reference publish/subscribe implementations:
Industry paper,” in Proceedings of the 11th ACM international confer-
ence on distributed and event-based systems, 2017, pp. 227–238.

[21] T. Rosado and J. Bernardino, “An overview of openstack architecture,”
in Proceedings of the 18th International Database Engineering &
Applications Symposium, 2014, pp. 366–367.

[22] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance
of multi-tenant virtual networks in openstack-based cloud infrastruc-
tures,” in 2014 IEEE Globecom Workshops (GC Wkshps). IEEE,
2014, pp. 81–85.

[23] B. Beach, S. Armentrout, R. Bozo, and E. Tsouris, “Virtual private
cloud,” in Pro Powershell for Amazon Web Services. Springer, 2019,
pp. 85–115.

[24] A. Gupta, A. Mehta, L. Daver, and P. Banga, “Implementation of
storage in virtual private cloud using simple storage service on aws,”
in 2020 2nd International Conference on Innovative Mechanisms for
Industry Applications (ICIMIA). IEEE, 2020, pp. 213–217.

[25] D. C. Wa, “Security in the virtual private cloud,” in Security in the
Private Cloud. CRC Press, 2016, pp. 165–176.

[26] W.-H. Liao and S.-C. Su, “A dynamic vpn architecture for private cloud
computing,” in 2011 Fourth IEEE International Conference on Utility
and Cloud Computing. IEEE, 2011, pp. 409–414.

[27] A. Z. Bhat, D. K. Al Shuaibi, and A. V. Singh, “Virtual private
network as a service—a need for discrete cloud architecture,” in 2016
5th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions)(ICRITO). IEEE, 2016,
pp. 526–532.

[28] L. Malina, G. Srivastava, P. Dzurenda, J. Hajny, and R. Fujdiak, “A
secure publish/subscribe protocol for internet of things,” in Proceed-
ings of the 14th international conference on availability, reliability and
security, 2019, pp. 1–10.

[29] K. An, S. Pradhan, F. Caglar, and A. Gokhale, “A publish/subscribe
middleware for dependable and real-time resource monitoring in the
cloud,” in Proceedings of the Workshop on Secure and Dependable
Middleware for Cloud Monitoring and Management, 2012, pp. 1–6.

[30] L. Nie, D. Jiang, and Z. Lv, “Modeling network traffic for traffic matrix
estimation and anomaly detection based on bayesian network in cloud
computing networks,” Annals of Telecommunications, vol. 72, no. 5,
pp. 297–305, 2017.

[31] R. A. Memon, S. Qazi, and B. M. Khan, “Design and implementation
of a robust convolutional neural network-based traffic matrix estimator
for cloud networks,” Wireless Communications and Mobile Computing,
vol. 2021, 2021.

[32] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[33] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[34] A. Krause and D. Golovin, “Submodular function maximization.”
Tractability, vol. 3, pp. 71–104, 2014.

[35] H. Xu, Z. Yu, X.-Y. Li, L. Huang, C. Qian, and T. Jung, “Joint
route selection and update scheduling for low-latency update in sdns,”
IEEE/ACM Transactions on Networking, vol. 25, no. 5, pp. 3073–3087,
2017.

[36] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang, “Duet: Cloud scale load balancing with hardware and soft-
ware,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 27–38, 2014.

[37] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta, B. Fahs,
D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Docauer et al.,
“Andromeda: Performance, isolation, and velocity at scale in cloud
network virtualization,” in 15th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 18), 2018, pp. 373–387.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[39] A. G. Nikolaev and S. H. Jacobson, “Simulated annealing,” in Hand-
book of metaheuristics. Springer, 2010, pp. 1–39.

[40] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[41] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement, 2009,
pp. 202–208.

[42] Godaddy. Accessed: July. 20, 2021. [Online]. Available: https:
//www.godaddy.com/

[43] S. Paul, R. Jain, M. Samaka, and J. Pan, “Application delivery in multi-
cloud environments using software defined networking,” Computer
Networks, vol. 68, pp. 166–186, 2014.

[44] Apache kafka. Accessed: July. 20, 2021. [Online]. Available:
https://kafka.apache.org/

[45] Rabbitmq. Accessed: July. 20, 2021. [Online]. Available: https:
//www.rabbitmq.com/

[46] Apache pulsar. Accessed: July. 20, 2021. [Online]. Available:
https://pulsar.apache.org/

